Engineering Analysis (FEA)

 

Computational engineering analysis enables us to predict structural, thermal, electromagnetic and fluid behavior in complex designs. We develop computer models using finite element analysis (FEA) programs during our design process to ensure that the hardware we build will perform effectively and safely. We commonly apply structural FEA programs to ensure components have adequate strength and stiffness, electromagnetic FEA programs for magnet and high voltage design, thermal FEA for accurate estimates of thermal responses under different heating and temperature conditions, and fluid dynamics FEA programs to evaluate coolant flow. With modern-day FEA programs and desktop computers, we are able to develop highly detailed and complex models to capture design subtleties, evaluate a large number of “what-if” scenarios for optimizing and developing robust designs, and include the often complex interactions of multiple disciplines into one model (for example, thermal-structural, electromagnetic-structural, and fluid-thermal-structural). Custom integration of commercial FEA programs with other computer programs are developed as needed.

Although FEA can be very accurate in predicting performance, we always consider validation and verification of FEA models using prototypes or real-world measurements. Validation and verification provides the necessary feedback for ensuring a high-fidelity model.